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Abstract. Using the methods of differential equations we have obtained the complete set 
of functionally independent bases of invariants for some continuous Lie groups of mathe- 
matical physics: ( i )  the conformal group; ( i i )  the semi-direct product of the Weyl group 
and the one-parameter group of Y translation; ( i i i )  the direct product of the Poincari 
group and the one-parameter group of Y scaling; ( iv )  the Weyl group; ( v )  the 14-parameter 
maximal symmetry group of the Schrodinger equation for the Coulombic system of atoms 
and molecules; and (v i )  SU(3) of elementary particle physics. The first four groups are 
the only groups which, together with the Poincari group, are the maximal symmetry groups 
of all forms of the non-linear Klein-Gordon equation. 

1. Introduction 

In group theoretical studies of physical problems the knowledge of the symmetry group 
is, of course, the starting point. An important aspect of group theoretical analysis 
involves knowledge of the invariants of the system. In classical problems there are 
two methods of attack: Noether’s method, based on the invariance of the action integral 
(Lutzky 1978, 1979), and Lie’s theory of extended groups (Leach 1981, Prince 1983, 
Prince and  Eliezer 1980, 1981). 

In the investigations of quantum systems the Casimir operators play the same role 
as the classical invariants. These polynomials of the generators of the symmetry group 
of a dynamical system are important because the simultaneous eigenvalues of the 
complete set of a!gebraically independent Casimir operators characterise the irreducible 
finite-dimensional representations. Berdjis (1981) has given a criterion for a set of 
Casimir operators of a finite-dimensional complex Lie group to be complete and has 
used this criterion to construct the complete set. It is to be noted that this method is 
used only for polynomial operators. 

Winternitz and co-workers (Patera er a /  1976a, b)  have considered the complete 
set of functionally independent (in contrast to algebraically independent) invariants 
of Lie groups. Any invariant of a particular Lie group can thus be functionally expressed 
(not just algebraically expressed) in terms of the members of this complete basis set. 
Their method consists of giving a representation of the generators of the Lie group in 
the form of differential operators. Obtaining the complete basis set reduces to obtaining 
the complete set of integrals of a set of partial differential equations. However, they 
d o  not give an  algorithm for the complete solution of the set of partial differential 
equations. We point out here that exactly such an algorithm exists (Goursat 1945) 
and this procedure has been applied for obtaining the complete basis set of functionally 
independent invariants. 
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The groups that we have investigated are the following. The non-linear Klein- 
Gordon equation in three space and one time dimensions has, for general non-linearity, 
the PoincarC group as the maximal symmetry group. The symmetry group contains 
the Poincare group as a proper subgroup only for special types of non-linearity (Rudra 
1986a). The corresponding groups are (i) the conformal group; (ii) the semi-direct 
product of the Weyl group and  the one-parameter q translation; ( i i i )  the direct product 
of the Poincart group and  the one-parameter group of Y scaling; and  ( iv )  the Weyl 
group. The next system that we studied is (v)  the 14-parameter maximal symmetry 
group of the Schrodinger equation of the Coulombic system of atoms and molecules 
(Rudra 1986b). The last case is (vi)  the SU(3) group of elementary particle physics. 

2. Complete basis set of invariants 

In  this section we first define what we mean by a complete basis set of functionally 
independent invariants of a Lie group. We then describe the method for obtaining 
this complete set for a given group. 

We take the algebraic structure of a Lie group G by the commutation relations of 
its generators X , ,  i = 1, . , . , n, 

A function I ( { X } )  of the generators will be an invariant if 

[X,, 11 = 0 for all i = 1 , .  . . , n. ( 2 )  

The set of invariants I,, a = 1 , .  . . , p ,  is a complete basis set of functionally independent 
invariants of G if any invariant I of G can be expressed as a function of the I ,  and 
the I ,  are functionally independent. 

In order to obtain this complete set we start with (Patera et a1 1976a, b )  a representa- 
tion of the X ,  in the form of differential operators: 

For an  invariant I ( { X } )  we get a partial differential equation 

x J ( { . x } )  = 0 i = 1, .  . . , n (4)  

comparable to equation (2) .  All these n equations may not be functionally independent. 
Let s of them be functionally independent and  these s equations form a complete 
Jacobian system of equations. These n partial differential equations, equation (4), in 
n variables x,, i = 1, . . . , n, will have p = n - s integrals, Z u ( { x } ) ,  a = 1 ,  . . . , p ,  such that 

X , L  = 0 i = l ,  . . . ,  n , c u = l ,  . . . ,  p ( 5 )  

and any I ( { x } )  satisfying equation (4) will be a function of I,. 
We now replace the x, in I,, by X ,  and symmetrise the expressions with respect to 

the X,. In case rational functions of x, occur in I , ,  we symmetrise the numerator and 
denominator separately. The resulting functions 

(6) 

form the complete set of functionally independent bases of invariants of the Lie group. 

I,, (Ix) 1 -, I,, ({X) 1 
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We now describe the method (Goursat 1945) for obtaining the p = n - s independent 
integrals of the set of equations (4). We write the s Jacobian equations in the form 

L,I = al/ax, + b,,(x)aI/ax, = 0 i = 1, . . . , s. ( 7 )  

We take any one of them, say the first one, L I I  = 0, and obtain the integrals xi, ’ ,  
i = 2 , .  . . , n. We then choose variables x’,” and xi’), i = 2 , .  . . , n, so that the Jacobian 
determinant a({x“’})/a({x}) # 0. In terms of these variables we rewrite equation ( 7 )  
and obtain 

L:I!I = az/ax:” = o (8) 

m = c +  1 

( I  thus being independent of x:”) and 

L ~ ” I = d I / a x j ’ ) +  1 b j ~ a I / a x ~ ’ = O  i = 2 ,  . . . , s. (9) 
m - I + I  

The b::: occurring in equation (9)  are independent of x‘,‘’. Equation (9) is thus a 
complete Jacobian system of n - 1 variables xi’!, i = 2 , .  . . , n. Proceeding in this way 
step by step we finally obtain p = n - s functions I,, a = 1, . . . , p, which simultaneously 
satisfy equation (5). 

In practice we need not eliminate the dependent equations in (4). We work with 
all the n equations (4) and after the first step equate separately to zero the coefficients 
of different powers of x:”, thus possibly getting some extra equations. This procedure 
is followed at every step. At some intermediate step we obtain some identities like 
zero equal to zero, thus dropping the dependent equations. We thus have an algorithm 
for obtaining simultaneous integrals of a set of partial differential equations. 

We have applied this method for obtaining the complete basis set of invariants for 
the groups of mathematical physics, described in 5 1. It is true that, even for a single 
partial differential equation of n variables obtaining, the n - 1 integrals may be a 
difficult proposition. Fortunately, in all the cases and in all the steps involved, we 
have been able, by a judicious choice of sequences in the solution of equation ( 7 ) ,  to 
reduce the equations to the following types: dy  + yf( x )  d x  = 0, a x  d x  + by dy = 0 and 
by d x  + a x  dy = 0. Only once in the case of SU(3) we are confronted with the differential 
equation dx/2z2  = dy/(24xz’-y2) = -dz/yz, having the integrals I ,  = 6x2-y /z  and 
1 2  = 2z -4x3  + xy/z. 

3. Examples 

In this section we apply the procedure described in § 2 to the groups stated in 9 1 and 
obtain the complete set of functionally independent bases of invariants for these groups. 

3.1. Non-linear Klein-Gordon ( K G J  equation 

I n  terms of the space variables q n ( a  = 1 , 2 , 3 )  and the reduced time variable T = ut, 
this equation is 

where a and 7 as subscripts mean partial derivatives with respect to q(, and T, 

respectively. 
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3.1.1. General V(U). It has been shown (Rudra 1986a) that for a general form of 
non-linearity V(V), the symmetry group is the Poincare group with generators 

X "  = -ia/aq, X' = - ia /ar  X g  = -i euPyqPa/aqy 
(11) P Y  

x :  = ra /aqu + q,a/ar 

with structure constants 
[x", x P , ]  = i e a p y X Y  [ X " ,  X f ]  = 6",X' [ x : X : ] = x "  

Y 

[x:, XP,I = i c e,,,XYR 
Y 

where enPy is the permutation symbol. 

invariants 
The complete set of functionally independent bases consists of the two well known 

I ,  = (X")' - (XT) '  
n 

- ( (x")2)( ( ~ 1 2 )  + 2 i x '  ,PY c e m P y x ~ ~ ~ ~ ~ } .  (13) 

Here and below in similar positions S means that symmetrisation in the X has to be 
done. That these invariants form the complete basis for polynomial Casimir invariants 
is well known (Elliott and  Dawber 1979). What we have obtained here is that they 
also form the complete basis of functionally independent invariants. 

3.1.2. Linear K G  equation, V =  V,V. The symmetry group is a direct product of the 
PoincarC group and the "-scaling operator X o  = q a / a q ,  with X ,  commuting with all 
the generators of equation (1 1). The complete basis set in this case consists of three 
invariants, I , ,  I 2  of equation (13) and I ,  = X o .  

3.1.3. V =  V o Y n  (n  # 1, 3) and V =  V,, exp(-cV), complex c # 0. Both these cases have 
the Weyl group as the maximal symmetry group with an extra generator X ,  over and  
above those of the Poincare group. For the case of the power-law non-linearity 
V -  VoYn ( n  # 1,3)  

x,=C q n a / a q , + r a / a r - [ 2 ~ / ( n  - l ) ] a / a q  
cL 

and for an  exponential-type non-linearity V = V, exp( -cV),  c # 0, 

~ " = C q ~ a / a q ~  + r a / a r + ( 2 / c ) a / a V  
o 

with extra commutator 

[ X " ,  X"]  = X" [XT) X"]  = x r .  (15)  
The complete basis set here consists of the single invariant 

1 = I,/ I ,  (16) 

where I ,  and I 2  are given in equation (13). 
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3.1.4. V =  Vo?P3. The maximal symmetry group in this case is the conformal group, 
with the following five extra generators over and above those of the PoincarC group: 

( 1 7 ~ )  
x,, = qaa/aqa + T a l a 7  - * a l a 9  

a 

X; = - ( i / 2 ) q 2 x a  + saxo XL= - ( i / 2 ) q ' ~ ' - ~ ~ ,  
where q2  = I;, q: - r2,  with the extra commutation relations 

[Xa, X,] =xu 
[XT, X,] = X' 

[Xu, X i ]  = -iS,,Xo-x e,,,Xi 

[X', X i ]  = -iX: 

[Xa, XL] = iX: 
Y 

[X', X i ]  = iX, 
(17b) 

[x;, xi1 = i c ea&X [x ; ,  X i ]  = -6,,XL [x ; ,  X i ]  = -xi 
Y 

[XO, xi1 = xi 
The complete basis set here consists of the following three invariants: 

[XO, XL] = x i .  

3.1.5. Inhomogeneous K G  equation, V =  V,. The symmetry group is the semi-direct 
product of the V translation (with generators X* = -ia/dV) and  the Weyl group (with 
generators given in Fi 3.1.3 for n = O ) .  The extra commutation relation is 

[X*, X , ]  = 2 x * .  (19)  
The complete basis set now consists of two invariants, Xw/I ,  and  12/1, where I, and 
I2  are given in equation (13). 

These are the complete set of potentials V ( q )  that can occur for a non-linear KG 

equation. 

3.2. Schrodinger equation for atoms and molecules 

The Coulombic system for the k,th electron of mass m and  charge e at position rLe 
( k ,  = 1, . . . , N e ) ,  and T types of nuclei with the k,th nucleus (k, = 1, . . . , N , )  of type 
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n ( n  = 1,. . . , T )  having mass M ,  and atomic number 2, at the position rnk,,  described 
by the time-dependent Schrodinger equation, has a 14-parameter Lie group (Rudra 
1986b) as the symmetry group. This Coulomb group has the generators 

x q  = ( M O /  fi)Ya/aq X '" = tXo" + R,X 

A" = - L" + 2 c eapyRpXoY 
P Y  

where 

and M O =  " ,+E, ,  MnN, , .  

non-vanishing commutation relations are 

[xoU, x '@]  = -iaaPXY [xoO, L O ]  = i 1 eupyXoY [XO", A@] = i eoPyXoy  

[ x ' ,  x'"] = -iXo" [x'", L O ]  = i e a p y X ' y  [X '" ,  AP] = i 2 e o P Y X f y  (21 )  

[ L", LP]  = i 1 eaPyLY 

The complete basis set in this cases has four invariants: 

Here a, p, y in the subscripts of r and  R denote the Cartesian components. The 

Y Y 

Y Y 

[ L", A P ]  = i eaPYAY [A",  A'] = i c empYLy. 
Y Y Y 

01 

(22 )  

Zj=S C ( L " - A " ) 2  1.. I, =c ( X 0 " ) 2 - 2 X Y X '  I , = X T  

PY 

3.3. SU(3) of strong interaction physics 

The strongly interacting hadrons are classified (Elliott and Dawber 1979) by different 
multiplets of SU(3), which has the generators 

0 1 0  0 0 0  

T+=[:  : T - = [ A  : :) T z = ( i  -i i) 
U + = [ :  : A) U - = [ :  

V + = [ y  :I ( 2 3 )  
0 0 0  0 0 0  0 0 0  

0 0 0  0 0 -f i  
The complete basis set here contains two invariants: 
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I ,  = T,’+(T+T-+ T - T + ) / 2 + (  U+U-+ U-U,) /2+(  V+V-+ V + V - ) / 2 + $ Y 2  

I? = S{ Y (  Tr’+ T+ T - )  - Y 3 / 4 + (  T ,  U ,  V+ + T- U -  V - )  - T,( U ,  U -  - V ,  V - )  (24)  

- Y (  U ,  U- - v+ V _ ) / 2 } .  

Finally, it is again emphasised that these invariants form the complete set of 
functionally independent invariants. 

Note added in prooJ Recently we have reported work on maximal symmetry groups of the non-linear 
Klein-Gordon equation, the Hamilton-Jacobi equation for a relativistic particle in flat spacetime and 
quantum relativistic equations (Rudra 1986a, c). After publication of these papers we became aware of 
earlier work on similar topics by Fushchich and Shteler (1982, 1983) and Fushchich and Serov (1983). 
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